The Numerical Solution of Boundary Integral Equations
نویسنده
چکیده
Much of the research on the numerical analysis of Fredholm type integral equations during the past ten years has centered on the solution of boundary integral equations (BIE). A great deal of this research has been on the numerical solution of BIE on simple closed boundary curves S for planar regions. When a BIE is de ned on a smooth curve S, there are many numerical methods for solving the equation. The numerical analysis of most such problems is now well-understood, for both BIE of the rst and second kind, with many people having contributed to the area. For the case with the BIE de ned on a curve S which is only piecewise smooth, new numerical methods have been developed during the past decade. Such methods for BIE of the second kind were developed in the mid to late 80s; and more recently, high order collocation methods have been given and analyzed for BIE of the rst kind. The numerical analysis of BIE on surfaces S in R has become more active during the past decade, and we review some of the important results. The convergence theory for Galerkin methods for BIE is well-understood in the case that S is a smooth surface, for BIE of both the rst and second kind. For BIE of the second kind on piecewise smooth surfaces, important analyses have been given more recently for both Galerkin and collocation methods. In contrast, almost nothing is understood about collocation methods for solving BIE of the rst kind, regardless of the smoothness of S. Numerical methods for BIE on surfaces S in R lead to computationally expensive procedures, and a great deal of the research for such BIE has looked at the e cient numerical evaluation of integrals, the use of iterative methods for solving the associated linear systems, and the use of \fast matrix-vector calculations" for use in iteration procedures.
منابع مشابه
CAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملNumerical solution for boundary value problem of fractional order with approximate Integral and derivative
Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...
متن کاملNumerical solution of nonlinear fractional Volterra-Fredholm integro-differential equations with mixed boundary conditions
The aim of this paper is solving nonlinear Volterra-Fredholm fractional integro-differential equations with mixed boundary conditions. The basic idea is to convert fractional integro-differential equation to a type of second kind Fredholm integral equation. Then the obtained Fredholm integral equation will be solved with Nystr"{o}m and Newton-Kantorovitch method. Numerical tests for demo...
متن کاملApproximate solution of the stochastic Volterra integral equations via expansion method
In this paper, we present an efficient method for determining the solution of the stochastic second kind Volterra integral equations (SVIE) by using the Taylor expansion method. This method transforms the SVIE to a linear stochastic ordinary differential equation which needs specified boundary conditions. For determining boundary conditions, we use the integration technique. This technique give...
متن کاملNumerical quasilinearization scheme for the integral equation form of the Blasius equation
The method of quasilinearization is an effective tool to solve nonlinear equations when some conditions on the nonlinear term of the problem are satisfied. When the conditions hold, applying this technique gives two sequences of coupled linear equations and the solutions of these linear equations are quadratically convergent to the solution o...
متن کاملSolving Volterra Integral Equations of the Second Kind with Convolution Kernel
In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad et al., [K. Maleknejad and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, Appl. Math. Comput. (2005)] to gain...
متن کامل